Skip to main content Site map

Mechanics of Materials, SI Edition (PDF eBook) 10th edition


Mechanics of Materials, SI Edition (PDF eBook) 10th edition

eBook by Hibbeler, Russell C./Hibbeler, Russell C.

Mechanics of Materials, SI Edition (PDF eBook)

£43.99

ISBN:
9781292178288
Publication Date:
09 Nov 2017
Edition:
10th edition
Publisher:
Pearson
Pages:
896 pages
Format:
eBook
For delivery:
Download available
Mechanics of Materials, SI Edition (PDF eBook)

Description

The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook. Time limit TheeBooks products do not have an expiry date. You will continue to access yourdigitalebookproducts whilst you have yourBookshelf installed. Thorough coverage, a highly visual presentation, and increased problem solving from an author you trust. Mechanics of Materials clearly and thoroughly presents the theory and supports the application of essential mechanics of materials principles. Professor Hibbelers concise writing style, countless examples, and stunning four-colour photorealistic art program all shaped by the comments and suggestions of hundreds of colleagues and students help students visualise and master difficult concepts. The Tenth SI Edition retains the hallmark features synonymous with the Hibbeler franchise, but has been enhanced with the most current information, a fresh new layout, added problem solving, and increased flexibility in the way topics are covered in class.

Contents

1. Stress Chapter Objectives 1.1 Introduction 1.2 Equilibrium of a Deformable Body 1.3 Stress 1.4 Average Normal Stress in an Axially Loaded Bar 1.5 Average Shear Stress 1.6 Allowable Stress Design 1.7 Limit State Design 2. Strain Chapter Objectives 2.1 Deformation 2.2 Strain 3. Mechanical Properties of Materials Chapter Objectives 3.1 The Tension and Compression Test 3.2 The Stress-Strain Diagram 3.3 Stress-Strain Behavior of Ductile and Brittle Materials 3.4 Strain Energy 3.5 Poisson's Ratio 3.6 The Shear Stress-Strain Diagram *3.7 Failure of Materials Due to Creep and Fatigue 4. Axial Load Chapter Objectives 4.1 Saint-Venant's Principle 4.2 Elastic Deformation of an Axially Loaded Member 4.3 Principle of Superposition 4.4 Statically Indeterminate Axially Loaded Members 4.5 The Force Method of Analysis for Axially Loaded Members 4.6 Thermal Stress 4.7 Stress Concentrations *4.8 Inelastic Axial Deformation *4.9 Residual Stress 5. Torsion Chapter Objectives 5.1 Torsional Deformation of a Circular Shaft 5.2 The Torsion Formula 5.3 Power Transmission 5.4 Angle of Twist 5.5 Statically Indeterminate Torque-Loaded Members *5.6 Solid Noncircular Shafts *5.7 Thin-Walled Tubes Having Closed Cross Sections 5.8 Stress Concentration *5.9 Inelastic Torsion *5.10 Residual Stress 6. Bending Chapter Objectives 6.1 Shear and Moment Diagrams 6.2 Graphical Method for Constructing Shear and Moment Diagrams 6.3 Bending Deformation of a Straight Member 6.4 The Flexure Formula 6.5 Unsymmetric Bending *6.6 Composite Beams *6.7 Reinforced Concrete Beams *6.8 Curved Beams 6.9 Stress Concentrations *6.10 Inelastic Bending 7. Transverse Shear Chapter Objectives 7.1 Shear in Straight Members 7.2 The Shear Formula 7.3 Shear Flow in Built-Up Members 7.4 Shear Flow in Thin-Walled Members *7.5 Shear Center for Open Thin-Walled Members 8. Combined Loadings Chapter Objectives 8.1 Thin-Walled Pressure Vessels 8.2 State of Stress Caused by Combined Loadings 9. Stress Transformation Chapter Objectives 9.1 Plane-Stress Transformation 9.2 General Equations of Plane-Stress Transformation 9.3 Principal Stresses and Maximum In-Plane Shear Stress 9.4 Mohr's Circle-Plane Stress 9.5 Absolute Maximum Shear Stress 10. Strain Transformation Chapter Objectives 10.1 Plane Strain 10.2 General Equations of Plane-Strain Transformation *10.3 Mohr's Circle-Plane Strain *10.4 Absolute Maximum Shear Strain 10.5 Strain Rosettes 10.6 Material Property Relationships *10.7 Theories of Failure 11. Design of Beams and Shafts Chapter Objectives 11.1 Basis for Beam Design 11.2 Prismatic Beam Design *11.3 Fully Stressed Beams *11.4 Shaft Design 12. Deflection of Beams and Shafts Chapter Objectives 12.1 The Elastic Curve 12.2 Slope and Displacement by Integration *12.3 Discontinuity Functions *12.4 Slope and Displacement by the Moment-Area Method 12.5 Method of Superposition 12.6 Statically Indeterminate Beams and Shafts 12.7 Statically Indeterminate Beams and Shafts-Method of Integration *12.8 Statically Indeterminate Beams and Shafts-Moment-Area Method 12.9 Statically Indeterminate Beams and Shafts-Method of Superposition 13. Buckling of Columns Chapter Objectives 13.1 Critical Load 13.2 Ideal Column with Pin Supports 13.3 Columns Having Various Types of Supports *13.4 The Secant Formula *13.5 Inelastic Buckling *13.6 Design of Columns for Concentric Loading *13.7 Design of Columns for Eccentric Loading 14. Energy Methods Chapter Objectives 14.1 External Work and Strain Energy 14.2 Elastic Strain Energy for Various Types of Loading 14.3 Conservation of Energy 14.4 Impact Loading *14.5 Principle of Virtual Work *14.6 Method of Virtual Forces Applied to Trusses *14.7 Method of Virtual Forces Applied to Beams *14.8 Castigliano's Theorem *14.9 Castigliano's Theorem Applied to Trusses *14.10 Castigliano's Theorem Applied to Beams Appendix A Geometric Properties of an Area B Geometric Properties of Structural Shapes C Slopes and Deflections of Beams Solutions and Answers for Preliminary Problems Fundamental Problems Partial Solutions and Answers Selected Answers Index Sections of the book that contain more advanced material are indicated by a star (*).

Accessing your eBook through Kortext

Once purchased, you can view your eBook through the Kortext app, available to download for Windows, Android and iOS devices. Once you have downloaded the app, your eBook will be available on your Kortext digital bookshelf and can even be downloaded to view offline anytime, anywhere, helping you learn without limits.

In addition, you'll have access to Kortext's smart study tools including highlighting, notetaking, copy and paste, and easy reference export.

To download the Kortext app, head to your device's app store or visit https://app.kortext.com to sign up and read through your browser.

This is a Kortext title - click here to find out more This is a Kortext title - click here to find out more

NB: eBook is only available for a single-user licence (i.e. not for multiple / networked users).

Back

JS Group logo