CURRENT BASKET VALUE
£0.00
ABOUT THIS BOOK
Mathematical Methods for Physics and Engineering: A Comprehensive Guide
£39.99

MATHEMATICAL METHODS FOR PHYSICS AND ENGINEERING: A COMPREHENSIVE GUIDE

PAPERBACK BY RILEY, K. F. (UNIVERSITY OF CAMBRIDGE); HOBSON, M. P. (UNIVERSITY OF CAMBRIDGE); BENCE, S. J.

£39.99

ISBN
9780521679718
IMPRINT
CAMBRIDGE UNIVERSITY PRESS
 
 
EDITION
3RD REVISED EDITION
PUBLISHER
CAMBRIDGE UNIVERSITY PRESS
STOCK FOR DELIVERY
IN STOCK
FORMAT
PAPERBACK
PAGES
1359 pages
PUBLICATION DATE
13 MAR 2006

DESCRIPTION

The third edition of this highly acclaimed undergraduate textbook is suitable for teaching all the mathematics for an undergraduate course in any of the physical sciences. As well as lucid descriptions of all the topics and many worked examples, it contains over 800 exercises. New stand-alone chapters give a systematic account of the 'special functions' of physical science, cover an extended range of practical applications of complex variables, and give an introduction to quantum operators. Further tabulations, of relevance in statistics and numerical integration, have been added. In this edition, half of the exercises are provided with hints and answers and, in a separate manual available to both students and their teachers, complete worked solutions. The remaining exercises have no hints, answers or worked solutions and can be used for unaided homework; full solutions are available to instructors on a password-protected web site, www.cambridge.org/9780521679718.

CONTENTS

Prefaces; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics; Index.